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SUMMARY

In this paper an algorithm for calculating roots is given that is
Newton's method initialized with a piecewise best starting apprcxima-
tion. The piecewise best starting approximation corresponds to 2
partition of the interval of the domain of Newton's method and it is
shown how to choose this partition to be cptimal. Explicit fornulas

are given when linear polynomials are used for the best starting ap-

ADA0464357

proximations. Specific examples are given for square roots, cubdbe

roots and reciprocal square roots.

1. INTRODUCTION

i

An effective algorithm for calculating roots is Newton's method
infitialized with a best starting approximaticn. Recently [2,3], this

procedure has been medified in that a piecewise best starting approxi-

_.____—_-A.

mation was used for initializing the Newton iteration. This is equi-
valent to subdividing the interval of application of the Newton itera- .

tion into subintervals und applying the theory of best starting approxi-
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mations to each subinterval. In this paper, we shall describe how

this subdivision can be done In an c¢ptimal manner.
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... The theory of best starting approximations for calculating roots

was first studied by Moursund [10] for the special case of square roots.

This theory was extended to general roots by Moursund and Taylor in

‘\ (11]. Subsequent studies found that the best starting approximation

—

for calculating roots via Newton's methed i{s independent of the number

' ~
’; of iterations to be used and is, in fact, a multiple of the best rela-

tive approximation to the root [8, 12, 13, 14, 15, 17]. Surprisingly,

4t was also shown [8, 12, 14] that one of the square root subroutines

in use prior to the development of this theory [5), was, in fact, the
qethod of Moursund.

This theory allows considerable leeway in desigining a specialized
root routine. 1In the case of large scale computers, it is possible to
design routines that return a predetermined accuracy and in most cases
have a decreased time lag when compared to calling the system's ;ubroutine.
Whereas, for microprocessors these algorithms can be incorporated as
firmware support whenaver the ability to calculate roots is desired.
For example, in [2,3] square root routines of this type were developed for
8-bit and 16~bit microprocessors, where it was desired for the 16-bit
routine to develop an algorithm which would give 15 bits of accuracy after
one Newton iteration initialized with a lirnear polynomial and have as its

16
domain of application all numbers of the form X = { lb}§=215+l' In order to
2

develop such an algorithm it was necessary to partition the point set into

X = XI\J xth XJ, Xl = XN (1/4, cll, X2 =X N (Cl‘ c2] and X3 = X r\(cz, 1]
for appropriately chosen ¢y and c;. Treating each of these three sets
independently it is possible to develop a square root algorithm satisfying
the constraints listed above (with the exception of the domain constraint).
Thus, the algorithm used a piecewise best linear polynomial starting approxi-

matfion ~- defined to be optimal on xl, X2 and XJ separately, The actual use




3
of this algorithm would first involve a scaling of the given positive
number by an even power of 2 to produce a number in X. Next, it would

determine which subset (Xl’ X, or X3) contains the scaled number and

2
then evaluate the best linear starting approximation at the scaled
number. This value is then used to initialize one Newton iteration

for calculating square rcots. The result of this iteration is then
multiplied (shifted) by 2 to half the power of the original scaliang and
then this value is returned as the desired square root. This algorithm
was compared with the corresponding direct and Cordic type of methods
[16] including Chen's modified version [4] and was found to be preferable
for the types of architectures considered. A second example was in the
development of a reciprocal square root routine using a divide-free
Newton iteration for inclusion in the particle moving section of a
relativistic plasma code on an IEM 360/91. The design constraints in
this case were a required accuracy of 10_S after one Newton iteration
initialized with a linear polynomial on [1/8, 1/2]. Here the interval
[1/8,1/2] was divided into five subintervals in order to satisfy these
constraints.

The main result of this paper is the following: Suppose that one wishes
to subdivide an interval [a, b] into v subintervals and calculate a root
via Newton's method on [a, b] by calculating independently on each sub-
interval. Then there exists a unique partition that ié optimal with
respect to the relative error. Even though this result is for the continuous
case it is still useful for actual applications since it suggests where to
subidivide in a discrete setting. The precise organization of this paper
is as follows. Section 2 contains a summary of the definitions and basic
theoretical results of best starting approximations, section 3 gives our

general results and section 4 gives specific examples of this theory for
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calculating square roots, reciprocal square roots using a divide free

iteration and cube roots, each subject to certain design constraints.

2. DEFINITIONS AND BASIC NOTIONS

Let [a,b] be a fixed interval with 0 < a < b and set
#.la,b]={R=P/Q : P& N, Q€ T, Qx) > 0 for all x € [a,b], (P,0)=1)
where Hk denotes the class of all real algebraic polynomials of degree
less than or equal to k and (P,Q) denotes the greatest common (poly-
nomial) divisor of P and Q. Fix a a real number, a # 0 or +1, and
define N, ¢ C+[a,b] + C[a,b], where C+[a,b] denotes the class of all
continuous positive functions defined on [a,b], by

NG = oz - Do + —135—-—], 3 « 1/a.

a he l(x)

Observe that Nu(h)(x), for fixed x is simply the result of one Newton

iteration for calculating X, with h(x) as its starting approximation

(or initial guess). That is, the formula for Nu is simply the result

of applying Newton's method to ys - x =0, x fixed. As usual, we also

define N: by NZ(h)(x) = NQ(NE-I(h))(x), the result of k Newton iterations.
*
Then R € 7€:[a, b] is said to be the best (relative) starting approximation

frome:[a, b] for calculating a-roots on [a, b] provided

x® - N (]") (0

x&

X3 = N (R) (x) |

a

) (1) n [atb]-
- X l [a,b]

= min

fa,b]  Re(a,b] '

where ”f(x)ll[a.b] = max{ |f(x)] : x & [a,b]} for £ € C [a, b]. We shall
suppress the subscript [a, b] on||+|| whenever the meaning is clear. Thus
the relative error of approximating x* with one Newton iteration for ¢alculatin
x® with initial guess R(x) is minimized on the interval [a,b] if R*(x) is used

*
as the initial guess. It is shown in [6,9] that R exists, is unique and is

B

—————————
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a multiple (depending upon a, [a, b]l, m and n) of the best relative
. ;i # a m ;
approximation, R(x), to x from n[a, B, i.e.
a

x: - R(x)|
x&

x> - R(x)
X3

(2)

= min

e . Ffrcm the
Rﬁﬂn(a.b]

general theory of uniform relative approximation [1], it is known that

i(x) exists, 1s unique and can be calculated by various methods (see for

x> - R(x)|

example, [7]). In fact (6,9], if |

= XA then
a

® -
R (x) = yQR(x) where
z 8-1 8-1 ,.8-11%
@ vy = [(@+2 08 - a -2 Y26 - maa - 2%, 8- 10
*
and this same R (x) is also the best starting approximation froij::a,b]

for k Newton iterates, i.e.

« ;
x> - NE(R ) ()|
X |

nela,b] =

= min

x* - NE(R)(x)1
Rez:[a,b]

x>

In closing this section, we would like to remark that a theory
of best (absolute) starting approximations for calculating rooté, fees

inf x® - ¥5@®) ) »
ch:{a,bj P '

k a positive integer is neither as well developed nor as rich as the
corresponding relative theory. It 1is known [2] that best absolute
starting approximations exist, are unique and can (in theory) be cal-
culated by a Remes type algorithm or a generalized differential cor-
rection algorithm [7]. Whether or not best absolute starting approxi-
mations are a multiple of some other well known approximation to x"

is not known (they are not a multiple of the best uniform approxima-
tion to xu) and optimal partiticning results corresponding to what we
shall prove for the relative case are not known., Thus, unless expli-
citly stated to the contrary, we shall be concerned with the relative

theory in what follows.

' . » . e e —
.




3. MAIN RESULTS
In this setting, we wish to first prove
Theoren 1. 1If R*E ){_’:[a,b] is the best starting approximation from
: R:[a,b] for calculating a-roots on [a,b] then R(t) = pGR*(t/a),
pa < t < pb, p > 0 is the best starting approxization from;E:[pa, eb]

for calculating a-roots on [pa, pbl. Furthermore, nu[a,b] = na[pa, pbl.

B W)Y
x° “

Proof: We are given that n_[a,b] = “x

Define the change of variables x = t/p. Then, for pa < t < pb, by

direct substitution we have that

e - N, R)(t)] - Ny R ()

|

te x&
[pa,pbl {a,b]
& = N _(R) (x)
Q
= min
A REXT(a,b] | x* fa,b]
a a
= min 1t - NG R)(t/o)y
P Rixg[paypb]" t’l ‘l [oa,pb]

= n,lpa,pbl.

Thus, by definition R(t) = paR*(t/p) is the best starting approximation
from?R:[pa, ¢b] for calculating a-roots on [pa, pb] and, by the first
comment of the proof, n [a, b] =n [pa, obl. |
Using this result, we are able to prove our optimal partitioning
result. The flavor of this result is the following. Suppose that one
wishes to subdivide the interval [a, b] a < b, into v subintervals
and calculate a-roots on [a, b] by actually calculating a-roots indepen-
dently on each subinterval. Then, it turns out, that there exists a unique

partitioning of [a, b] into v subintervals such the relative error of




approximating x> with a Newton iterate initialized on each subinterval
with the best starting approximations for that subinterval is minimal
‘over all such partitions of [a, b] and, in fact, the relative error on

each subinterval is the same.

Theorem 2. Let f’=’(§ 1 d = {d 4 ey dv} with a = d  <d. <d,. < ..,

0 R e 0 it 2
< d\’_1 < dv = b} be the set of all partitions of [a, b] into v subintervals.

Then, there exists one and only one partition, ¢ = {c

gr €17 cee cv}€ r

for which

1 = min  max n(d,d

wax e, e 4, 3.
a i gef) Oiii\)“ l (8 ) -~ i+l

O<i<v-1 i

This unique partition is given by the formulas cj = ap-vabj/v, =0, L ys0anie

In addition, this theorem holds with Ny replaced by ni for k a positive integer
Kp.. P

and "q(“i’ ci+l] nu[ci*

1 ci+2] for all k, a and 1.

Proof: First, observe that for the partition, ¢ = {cj);=0’ we have that

[cu, cu+1] = [ Lo pucll where o, = (%)u/v' FOF 1™ 3, cony ¥ = 1,

Thus, by Theorem 1, nu[:u’ Cu+l] = na[co, c1] Pore b = Yo saey W= 1

To prove the minmax statement of Theorem 2 (which will also establish
the uniqueness claim) we prove the following result first, Namely, if
[a, b], 0 <a <b and [c, d], 0 < c < d are any two intervals and % > %
then nu[a. 1) na[c. d]. Now by Theorem 1, we can replace [c, d] by
[pe, pd] where p = % and "a[C’ d] = nu[oc, pd]. Thus setting e=pd<b, we
shall prove that na[a, b] > na[a. e] which will establish this result.

To do this, let i(x) be the best relative approximation to X" on (8. 5]

from (:[a. b)]. Define the defect, &. of i(x) by d = min(m - 3;, n - 36)

-y




where R(x) = P(x)/Q(x) and 3P denotes the exact degree of the polynomial
P. Then, by the standard theory of best relative approximation [1],

there exists at least N = n+ m + 2 - d extreme points, a < x; < € e

N 3 %
R(x)
<xy < b on which the error curve E(x) = 1 -

alternates, i,e.,
x

IE(xi)l = gl 1 =12, ..., N and E(xi) = -E(x,

1+1)’ s RN R O

Since E € Cl[a, b), we must have that E'(xi) = 0 for at least i=2,..,,N-1.

Thus, E'(x) must have at least n + m -~ d zeros. Now,

Py x“'l[xéfx>§'(x)_~ P(x) (0(x) + x0" ()]
(x*Q(x))?
and since a > 0, and the deg}ee of the polynomial in the brackets in the
numerator equals 35 - aé which is less than or equal ton + m - z&,
we see that E'(x) can have at most n + m - 2d zeros in [a, b]. Comparing
these two zero counts, we see that we must have 2 = 0, 35 = m, 86 = n,
X =a, = b and that E(x) must have precisely ¥ = n + m + 2 extreme

points in (a, b]. Here, y € [a, b] is said to be an extreme point if
(E(y)l = {lE]l « Thus, R is not the best relative approximation to
x> on [a, e] from [2[3, e] since E(x) does not have the necessary alternating

behavior on [a, e]. Let Rl€ fﬁ[a, e] be the unique best relative

approximation to x* on [a, e]. We claim that R, is not a multiple of

1
R. This follows from the above zero counting argument, since for any
cR(x) : ; -
real ¢ # 0, Ec(x) = ] - ——= must be such that Ec(x) vanishes in [a, b]
x

only where E'(x) vanishes in [a, b],i:plyingthstc§~ﬁxs:xx!awe‘ﬁeracessary
number of alternations to be the best relative approximation to x% in [2; &l
Since the best starting approximations for calculating a-roots from

2:[3. e) and/E:[a. b] on (a, e] and [a, b] are multiples of R1 and R,

respectively and RE {;[a. e) we must have that




x - N, (R) (x) |

|

a !
X i

nula, e] = min

< n [as b]
ReXR(a,e] o

a,e]
by uniqueness.
Now let d = {dj};=0’ a=dj<d; <...<d =b, be adifferent

partition of [a, b] than the one given by the formulas in the hypothesis

of Theorem 2. Then we claim that for some j, 0 < j < v - 1, ﬁldj+1 > ¢
3
must hold. Indeed, if Jla < ¢, for all j with strict inequality holding
d;3+1 = 71

at least once, say at jl’ 0 < j; £ v =1 where jl is the first index where
strict inequality helds (such an index must exist since the partitions
are distinct), then we must have that dj = cj

for jl < j < v. This will give a contradiction since we must have

for 0 < j < j, and dj <y

dv i s b. Now, this assertion is proved by an inductive argument as

follows. Since dO = CO = a, we assume that dj < Cj hold for some j,
()

0<j < j1 —~ 1 then dj+1 5-1%dj by our original assumption so that
=1/v 1M ~1/v 1/v
dj+1-£ ¢ S dj S8y ey o cj+1. Thus, for 0 < j < j, we have
d, <c For j = j the assumption de < c. implies d < E-1—<:l
1= fd d3 44 = %1 ' I R
c’llvcllvc. = c and then, by induction again, we find that d, < c,
D vy it b 3
for j, < j < v as claimed. Thus, 24 < ¢, cannot hold for all j.
1 -~ dJ s o o i |
Let j, 0 < jJ < v -1 be an index for which Jid > ¢, holds. Then
- e ci.1 j+l i
a a 3
the interval [dj‘ dj+1] is such that [Egdj' E}dj+1] : la, ej] with ey > eq.

Hence, by our preceding work we have that "a[dj' dj+1] > na[a. c1] as desired.

From this it follows that max n_[e,, ¢ R ome Aok, 1]
Qﬁtﬁv'l - 4 i+l 0<i<v-1 - Bl § b i i 8

for each d € Fwith d # c. To see that this is also true for n, replaced

with ﬁt,k a positive integer, one need only observe that Na is a strictly
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pointwise monotone one-sided operator [9]. What this implies is that

NQ(R)(x) > x* for x € [a, b] and R(x) # x™ and {if, Na(Rl)(y) > Na(RZ)(y)

for some y € [a, b] then Nt(Rl)(Y) > Nt(RZ)(y) for k a positive integer.

From this observation the final result readily follows. B
Before applying this theory to some specific examples, we wish to study

the problem of finding best starting approximations‘from ;O[

for calculating nth roots on [a, bl. 1In this very simple case, it is

2y b} =2 Ty

possible to give analytical formulas for the best relative approximation

1/n

to x from nl on [a, b] and, therefore, also for the best starting

o roots on [a, b]. See reference

approximatio; from 31 for calculating n
[13] where this result has also appeared.

Theorem 3. Fix the intervzl [a, b], 0 < a < b, Then the best (linear)

relative approximation to x 1/n on [a, b] from Kl, P(x) = ax + 8, is
given by
1/n 1/n
.0 -a_ )a-2xn
) P b-a ¢
(5) B - (balln i abl/n)(l g \)
b-a
where
1/n =, Lo
(6) i o s 17n0( - ‘l
x “ penl
.
w+ 1’
and
1/n 1/ X 7 1/n 1/n 1/n
%) w=_n (ba T A TR 1 e W e B
n-1 b~-a ) \ bal/n —apt/® ,J :

Proof: By referring to the proof of Theorem 2, we know that the error

gx) ] - a2+ 8

curyve En(x) s ] - xl/“ i7n must have precisely three extreme
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points, a, £, b, a < § < b and that 5 will satisfy the following systen

(the unknowns are a, 8, £ and 1)

1 - a-l/n(aa + 8) = A
W L
1= ¥ M s ae s

o - l)ug-lln 53 85—(n+1)/n -5

where the fourth equation is the derivative of the error curve at £ set

equal to 0. Also, since the best linear relative approximation is unique,

we have that there exists one and only one solution to this system.
Solving simultaneously for @ and 8 in terms of 1 - A in equations 1 and 3
gives (4) and (5) of the theorem. Substituting this in equation 4 gives

an expression for £ and then substituting all these values in equation 2

gives the formula for i. B

Corollary 1. The best starting approximation from Hl for calculating

ath roots is p*(x)

yllnp(x) where p is defined in Theorem 3 and yl/n

is given by (3) with a = %. B

4. EXAMPLES

In this section we give specific examples of the above theory
for computing square roots, reciprocal square roots using a divide-free
Newton iteration and, finally, cube roots, In the first two examples

we shall only use best starting approximations from I, and consider what

1




12

happens when at most two Newton iterations are required. For the cube root
case we shall also consider other classes of rational functions for the

initialization of the Newton iteration.

A. Square Roots

To develop an algorithm for computing square roots based upon the
preceding theory, we must first select an interval of application. Any
interval of the form [a, 4a], a > 0 will do; however, the reascnable

: e 1k 1 1 s =
choices are intervals such as [g. 5], 3 5P or [E’ 2}. We shall use
1 . 3 ! S
'L 2] as our interval of application here. Thus, an algorithm for calcu-
1 ; y .
lating square roots based on [Ey 2] will have the following ccmponents.
First of all, the algorithm will have a scaling feature. Thus, to find
/;, y > 0 the algorithm will first scale y; that is, it will calgulate m,
: 2m 1 £ ; =
an integer for which y = 2° x and x € (%, 2]. Next, it will ccmpute one
or more Newton iterates, N (h) () = ~1-(h(x) § o ), to calculate v%
172 2 hiéx)

using the above theory with a best linear polynomial starting approximation

otk [%, 2]. It will then multiply (shift) this final value by 2°

and return this for the value /T. For a = % the formulas of Theorem
3 and (3) for the interval [a, b] reduce to

2
_[b1/4 % a1/4}

(8) Regw ™ Sprppr—ae
1/2 pl/e 4 174
1-2
9 G &
w1/2 4 a172
10) g = at/2pl/2,

2 ,-1/2
il vy = =y
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Thus, the best relative approximation to vx on [ﬁ, 2] is p(x)=.48528137u2x

+ .4852813742 with deviatien Al/? = -,02943725152 so that the best starting

1
approximation from N, on [F, 2] for calculating square rcot
-

= yllzﬁ(x) = .4848608528(x + 1) with (relative) error

I/Q(F )(X)[

/x

endpoints of the interval [a, b] (here x = %-or 2). Thus, after one Newton

which can be calculated by evaluating |1

iteration, we are guaranteed an approximation for vz with (relative) error
- 1 s : Iadios, A
< .396107 x 107% on [3, 2]. In addition, nZ,.[3, 2] = 7.841 x 1078, so

that if one were to calculate square rocts by this method using two Newton

3 3 A 1 o
iterates the (relative) accuracy of the approximaticn cn 7 2] to /x would
-8 . )
be < 7.841 x 10 ~. (All calculations were done on a Texas Instruments SB-58).

1

Next, consider the casz where the interval [=

@

into two subintervals. By Theorem 2, the optimal subdivision is [Z, 2]

= [ oD 11 U {1, 21. Thus, to calculate /;, y > 0 in this case, the al

. 2m 1 . : :
would again scale y, y = 2°7x, x € (5, 2]. However. it must next determine

which subinterval contains x by comparing x with 1. After doing this +he
algorithm proceeds as above with the best starting linear polynomials

given below, using the polynomial that corresponds to the interval centainin:
X.

1 " : . .
For [5, 1] the best starting approximation from I for calculating square

roots on {l, 1] is p*(x) = v, ,.p(x) = .5901785321x + .4173192421 with

1/2
-5 1
"1/2[2' 1] = 2.788912 x 10 ° and n1/2[ s 11 = 3.8 x 107t

For the second subinterval, [1, 2], the best starting approximation frem

my for calculating square roots on [1, 2] is p%(x) = .4173192421x+.5301725221

=5 i 2
so that n1/2[1, 2] = 2,789912 x 10 © = “1/2E5‘ 1] and n1/2 1, 2] =

= 3.8 x 10710 (as Theorem 2 predicts).

e
nl/ztfv A]
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Finally, for the square root case let us consider this algorithm when we
subdivide into three subintervals. In this case, we shall scale to the

interval [é, 1] so that a comment with respect to [3] can be made (the choicaz

| of [%. 1] rather than [%, 2] in that paper was simply a preference for how

we viewed the fixed point numbers in our microprocesscr). In this case the

a > S ; T s 2/3 2l A3,
theoretically optimal subdivision is [ ,11= C-'( 2/ ] [( ) g A G s R €

Repeating the above calculations for these three intervals, gives p*(x)

2/3

= .8879377727x + .2796828727 for [ J; p*(x) = .7047566772x

1 2/3 1/3

x:|r-

;
A 5- J; and p%(x) = .5593857454x + .4439638863

+ .3523783386 for [(

for [(%)1/3,1] with " /9 = S.5u139x10-6 for all three subintervals. 1In all
11 3

cases, ni/? is of the order of 1 x 10" °" in this example. Since ~16 is of
-5

the order 1.53 x 10 °, it appears to be necessary to partition [%, 1] into
three subintervals to obtain an accu"acj cf at least 2-16. Since the domain

of application in [3] was X = {'134--214+l’ the above theory implies that X
126,007

S+3Anm Be ke han = _J_
should be partiticned ln_o_Xl\J X, U X, where X; {2 5l5= 21“fl’
16
= _J_ 2 3 - 43 4+ v
and X, {216}3-»;,‘85 For this partition the errors "1/2

and nl/2[X3] will all be less than N1 /2 of abcve and in this case not equal.

\"‘:{__2_.
However, in [3] the absclute error was the measure of accuracy so that

this subdivision was modified. Specifically, for the subdivision

X = XlU X2U X, given above we have that (n =n )

. 1/2
4
|/x - Ny /o (P*Ces X)) ()| < me g
for x € Xgs i=1, 2 or 3 where € = (%-)1/3. €, = (%)l/6 and €y = 1 and

p*(-, Xi) denotes the best linear (relative) starting approximation for
calculating square roots on xi. i1=1, 2o0or 3. Thus, our final choice o

: - R 13 2hy
our pertition was X = Yl!J Y2 9) Y3 where Yl s (5 32]’1 O § ( 3:,)f'\ X

2 3z’

and Y = (

32. 11N X. In addition, the polynomials p¥*(x, %) ax + By

I RS SRR
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were also modified so that the product a.x could be computed through the

i
use of twvo shifts and one add and the required accuracy after one Newton
iteration was still 2_16 (absolute error). As remarked earlier, it is
not known how to optimally subdivide an interval for the corresponding
absolute error problem. To some degree, this would involve estimating
the error of this procedure as a function of the interval and this is a

difficult problem. In fact, even in the classical theory of best uniform

approximation not much is known in this regard.

B. Reciprocal Square Roots - Divide-Free Irzraticn
This amounts to applying the above theory with a = - %- (n = =2),

.
In this case N_l/z(h)(x) = h%%l [3 - x*h"(x)]. In developing an algorithm

using this iteration we must again scale numbers as in the square root
case. Thus, we shall assume that the scaling will be done with respect
to the interval [ly 2]. 1In what follows, we shall give the best linear
starting approximations for this algorithm when one uses the interval
%3 2], subdivides it into two subintarvals and subdivides it into six
subintervals.

Now for this particular iteration on an interval [a, b], the formulas

of theorem 3 and (3) reduce to




—

.

7
%
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/
1/2,1/2 , 3/2 _ 3/2,1/2,1/2,1/2  1/2,

(12) L. a2
- o L) - ) T /"
V2 a4 4 o202 32 3212172 T2 [ 12,
-
(13) a=- =
‘1/2b1/2(b1/_ H al/l)
(14) gegpta B, e
3 1/2
(15) Y12 © ;—:-;7-—‘
-1/2

Thus, the best starting approximation from :l for calculating reciprocal

square roots on [%, 2] via this iteration is p*(x) = -.4314166817x

A 253 x 16°T and w12
+ 1.509958386, with ”-1/2[2‘ 2] = 1.048824252 x 10 ° and n_1/27 2]

- 1.64427987 x 10°%.

For subdividing [%, 2] into two subintervals, we have by the previous

theory, [%, 2] = %, 1] U (1, 2] is the optimal partition. For the

subinterval f%, 1], the best starting approximation from 31 for calculating

reciprocal square roots on [%, 1] via this iteration is p*(x) = -.8100537518x

- 2 -
+ 1.787875129 with n = 7.37705125 x 107* and ”:1/2[%' 1] = 8.16115x10

1
s12(%0 1]
Likewise, for the interval [1, 2], p*(x) = -.2863972505x + 1.264218627 wizh

n2
-1/2 -1/2

Finally, let us consider the form of this sort of an algorithm where

(1, 21 = n_, (3 1] and 2| 001, 2] = % (1, 21.

".1/2

it is desired to subdivide [%, 2] into six subintervals, In this case

the optimal parcition is [3,21=(3, P dH? I i e,

L)[les, 22/3) U [22/3. 2]. We shall only consider the interval [1, 21/3]
since the other intervals can be treated in a like manaer. Thus, for
(1, 21,3] by direct calculations, p*(x) = -.4186092113x + 1.416201135

3 | - -
with n_y 01, 2731 = 9.352785 x 107 and 2,11, 21/%) @ 1035 « 20710,
Note that, in addition to the cost of the scaling and determining which

subinterval contains the scaled number, this algorithm for one Newton

iteration, consists of three Multiplies, one add and one shift.

v —: - - - - " N T ——— — -
+ S
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" g .Cube Roots

For this particular example we will also consider some nonlinear best startin

g

approximation. As before, in designing a cube root routine of this sort
one must first select an interval of application. The interval we shall
use is [%. 1]. Thus, the final algorithm for computing };, v real, would
have a scaling routine which would (i) change the sign of y if y < 0 and
also change the sign {(to negative) of the computed cube root of -y prior

to returning a final approximation, and (ii) scale y (assume y > 0),

i.e. compute y = 23mx where m is an integer and x €.(§, 1]. Then, the cube
root of x can be calculated by any one of the following routines; the
result will be multiplied (shifted) by 2™ and returned for %; . In what
follows, we shall give the best linear starting approximation for the

full interval [%3 1] and partitions of this interval into 3 and 6 subintervals.
In all cases, we shall also give the (relative) error after one and two
Newton iterates. In addition, for the interval [%, 1] and the partition

of this interval into 3 subintervals, we shall give the best starting

— =

approximations from Rﬁ, 0<my,n,m+n=%, k=1, 2, 3 wherem and n

for fixed k are chosen so that the best starting approximation fromﬁig,
(m, n) # (m, n), 0 <m, n,m+n=m+n does not give a better relative
approximation for }; after one newton iteration. These best starting
g approximations were calculated on a CDC~6400 where we found the best
telative.approximation to 9;'on the interval in question discretized into
equally spaced mesh points with a step size of h = 3%3 using (7]. We
then multiplied this function by the appropriate Y1/3 given by (3) using

the respective Xl/J'
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First, for [%, 1]. For the class nl, we find that the best starting

approximation is p*{x) = .6055481056x + .4541610792 with nl/3 8' 1] =
and ni/3 = 1.08496 x 10-5. In addition, the best starting approximation
from H1 = E%[%, 1] is better than the best starting approximation from f?.

Next, for k = 2, we find that for the three classes, 0, = 23[%3 1y

%[8. 1], xz 3, 1] the best gstarting approximation fromfi
3-
is the best since the best relative approximation to vx from (i[;, 1] on

1 : : 2
3’ 1) gives a relative error of approximately .650 x 10 2; whereas, this

1) and

corresponding error is .159 x 10-1 and .418 x 10.l ffom'~;[8,

20 1 1], respectively. Using the code [7], we find that the best

2[8'
~ /41.4‘ 42
relative approximation to ?; on [l, 1] is R(x) = .1477442896 - _g, e
3 d/uﬁ-all +
2 -2/3
Y ©

1.477484521

-9
with relative error 11/3 = ,6500719120 x 10 © so that Y1/3 °

= 1.000028174 and the best starting approximation is R*(x)

.8414788493 1 = 2 ( S

with n 1] = 4.226074 x 10 ~ and n 1] = 1,78x10

T 7387462419 + x 13t 1738
~2
For k = 3 by the same procedure we find that kl{£3 1] is the preferable

3
3,1 2,1 old ol
class fromAfo[s. 1},'%1[8 1], % [ T il and E?‘S’ 1]. For this class, the

best starting approximation is R*(x) = .2437995493x + .8898929185 -

with n1/3[%, 1] = 8.438 «x 10.7 and ni/3[%, 1] = 0.0 (on our SR-56, should be

of the order 10-14).

1 11 1 1 &
Next, for the (optimal) partition [§,1]=[§,I] ) [2.31 U [5,1]- Here
we shall only give the results for [%, 1]. The best linear starting

approximation for calculating cube roots on [l. 1] is p*(x)=.4153501945x%

1 =9

+ .5913005214 with n 1] = 4.407136 x 10 i and nilj[i, 1] = 1.94 x 10

13l
1 ZO 1
As before on [— 1], this class is preferrable to 1[5, 1

Once again, F 1] is the preferrable class to use from the set

1[2
z0(2' 1], xl[L 1] and,fofz- 1]. The best starting approximation from

)61[2. 1] for calculating cube roots on [2, 1] is R*(x) = 1.79070927

o _1.347475985 o -8 et
1+ .7035864292% “ith “1/3[2' 1] = 6.503 x 10 ~ and 01/3l2o 1] = 0.0
(on our SR-56, should be of the order of 10-16).

30112 x }

.1608Q7527%"
«2796064145:
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From the classes [a[%, i 3 = fz[l 11, fl[,, 1] and ﬂP[%. 1], we again

1t

find that the class i [2, 1] will give the most accurate (relative) approxi-

mation. The best starting approximation from fiti’ 1] is R*(x)

.4105032829 1 -10
=, ’ 4 ; 4 e s == wi =, = .
1662848358 + 1.096040958x - —tosore— with np .05, 1] = 1.5 x 10
-20

and n1/3[2, 1] of the order 10

Finally, if one partitions [g. 1] into 6 subintervals the optimal

15/2][15/21 1/' 3 1.1 32 3

partition is [" 1]= .( ) AU < NI 'q,u[ i

Nl,tn

e 1
v

t\)lra

/5
For the interval [7?, 1] the best linear starting approximation is

2

-6
1357

p*(x) = .3731163725x + .6285515591 with n » 1] = 2.77582 x 10

g i 3 -12
and nl/3[ 7 1] of the order 10 5

The above variety of possibilities indicates the flexibility of these
sort of algorithms. Thus, in designing a specific subroutine for calculating

th ¥y e A Sy
a fixed n root one can try to minimize theeffect of such things as machines

that are relatively slow in computing a divide and so on.
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